A physical system is defined in terms of a number of degrees of freedom which are represented as variables
in the equations of motion. Once the initial conditions are specified for a given time, the equations of
motion give a deterministic procedure for finding the state of the systems at any other time. Since there is
no room for alternatives in this description, there is apparently no room for hereditary processes… The
only useful description of memory or heredity in a physical system requires introducing the possibility of
alternative pathways or trajectories for the system, along with a ‘genetic’ mechanism for causing the
system to follow one or another of these possible alternatives depending on the state of the genetic
mechanism. This implies that the genetic mechanism must be capable of describing or representing all of the
alternative pathways even though only one pathway is actually followed in time. In other words, there must
be more degrees of freedom available for the description of the total system than for following its actual
motion… Such constraints are called non-holonomic.
—Howard Pattee, 1969
物理系统是以许多自由度来定义的,这些自由度表示为变量。
在运动方程中。一旦给定的初始条件被指定,方程
运动给出了确定系统在任何其他时间的状态的确定过程。既然有
在这个描述中没有选择的余地,显然没有遗传过程的空间…
只有对物理系统中的记忆或遗传进行有用的描述,才可能引入
系统的替代路径或轨迹,以及导致基因的“遗传”机制
根据基因的状态来遵循这些可能的替代方案中的一种或另一种
机制。这意味着遗传机制必须能够描述或表示所有的
替代途径,即使只有一个途径实际上是遵循时间。换句话说,必须
更多的自由度可用于描述整个系统,而不是遵循它的实际
运动……这种约束被称为非完整的。
-Howard Pattee,1969(谷歌翻译仅供参考)